Free Radicals Scavenging Activities of Low Molecular Weight Sodium Alginate (LMWSA) from Sargassum polycystum, Produced by Thermal Treatment

Ervia Yudiati, Delianis Pringgenies, Ali Djunaedi, Zaenal Arifin, Agung Sudaryono

Abstract


In this study, the effects of alginate from Sargassum polycystum molecular reduction by thermal heating on DPPH anti radical scavenging activity were investigated. Raw alginate as the control treatment was heated at 140oC in a laboratory oven for different time courses 1.5, 4.5, and 7.5 hours. The assessment of molecular weight, UV-visible and FT-IR spectroscopic studies were applied. By heat treatment, molecular weight of polymer was decreased in a time-dependent manner, though there is no significant difference between 4.5 h and 7.5 h samples. The UV-visible spectroscopic studies pointed that there was a new absorption band between 250 and 290 nm in alginate heated treatments. The higher antiradical scavenging activity were reached from 1.5 h and 4.5 h treatments (19.83% and 20.07%). Interestingly, the antiradical scavenging activity of the longest heating treatment (7.5 h) was reduced (16.85%), similar to the raw alginate (17.89%). Prolonged heat treatments influenced the antioxidant activity and reduced the ability of donate electrons or hydrogen atoms to inactivate this radical action.


Keywords


Alginate; Antioxidant; LMWSA; Sargassum

Full Text:

Fulltext

References


Aida, T.M., T. Yamagata, M. Watanabe, and R.L. Smith Jr. 2010. Depolymerization of sodium alginate under hydrothermal conditions. Carbohydr. Polym., 80(1): 296–302.

Banerjee A., N. Dasgupta, and B. De. 2005. In vitro study of antioxidant activity of syzigium cumini fruit. Food Chem., 90(4): 727-733.

Burana-osot, J., S. Hosoyama, Y. Nagamoto, S. Suzuki, R.J. Linhardt, and T.Toida. 2009. Photolytic depolymerization of alginate. Carbohydrate Research, 344(15): 2023–2027.

Celik E., I. Keskin, I. Kayatekin, F. Ak Azem, and E. Özkan. 2013. Al2O3–TiO2 thin films on glass substrate by sol–gel technique. Mater. Charact., 58(4): 349–357.

Chandia, N.P., B. Matsuhiro, and A.E. Va´squez. 2001. Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydr. Polym., 46(1): 81–87.

Chandia, N.P., B. Matsuhiro, E. Mejias, and A. Moenne. 2004. Alginic acids in Lessonia vadosa: Partial hydrolysis and elicitor properties of the polymannuronic acid fraction. J. Appl. Phycol., 16(2): 127–133.

Choi J.I., H.J. Kim, J.H. Kim, M.W. Byun, B.S. Chun, D.H. Ahn, Y.J. Hwang, D.J. Kim, G.H. Kim, and J.W. Lee. 2009. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds. Appl. Radiat. Isot., 67(7-8): 1277–1281.

Choi, J.I., J.K. Kim, J.H. Kim, D.K. Kweon, and J.W. Lee. 2010. Degradation of hyaluronic acid powder by electron beam irradiation, gamma ray irradiation, microwave irradiation and thermal treatment: A comparative study. Carbohydr. Polym., 79(4): 1080–1085.

Daar, E., L. King, A. Nisbet, R.B. Thorpe, and D.A. Bradley. 2010. Viscosity changes in hyaluronic acid: irradiation and rheological studies. Appl. Radiat. Isot., 68(4-5): 746–750.

Donati, I. and S. Paoletti. 2009. Material properties of alginates. In: B.H.A. Rehm (Ed.) Alginates: Biology and Applications. Springer, pp. 1–53.

Draget, K.I. and C. Taylor. 2011. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll., 25(2): 251–256.

El-Mohdy, A.H.L. 2017. Radiation-induced degradation of sodium alginate and its plant growth promotion effect. Arabian Journal of Chemistry, 10(1): 431–438.

Falkeborg, M., L-Z Cheong, C. Gianfico, K.M. Sztukiel, K. Kristensen, M. Glasius, X. Xu, and Z. Guo. 2014. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem., 164(1): 185–194.

Fawzy, M.A., M. Gomaa, A.F. Hifney, and K. M. Abdel-Gawad. 2017. Optimization of alginate alkaline extraction technology from Sargassum latifolium and its potential antioxidant and emulsifying properties. Carbohydr. Polym., 157(10): 1903–1912.

Haug, A., B. Larsen, and O. Smitsrod. 1963. The degradation of alginates at different pH value. Acta Chem. Scand., 17: 1466-1468.

Haug, A., B. Larsen, and O. Smitsrod. 1967. Alkaline degradation of alginate. Acta Chem. Scand., 21: 2859-2870.

Holme, H.K., L. Davidsen, A. Kristiansen, and O, Smidsrød. 2008. Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohydr. Polym., 73(4): 656–664.

Holme, H.K., H. Foros, H. Pettersen, M. Dornish, and O. Smidsrød. 2001. Thermal depolymerization of chitosan chloride. Carbohydr. Polym., 46(3): 287–294.

Holme, H.K., K. Lindmo, A. Kristiansen, and O. Smidsrød. 2003. Thermal depolymerization of alginate in the solid state. Carbohydr. Polym., 54(4): 431–438.

Hwang, P.A., C.H. Wu, S.Y. Gau, S.Y. Chien, and D.F. Hwang. 2010. Antioxidant and immune-stimulating activities of hot-water extract from seaweed Sargassum hemiphyllum. Journal of Marine Sciene and Technology, 18(1): 41-46.

Isnansetyo, A., H.M. Irpani, T.A. Wulansari, and N. Kasanah. 2014. Oral administration of alginate from a tropical brown seaweed, Sargassum sp. to enhance non-spesific defense in walking catfish (Clarias sp.) Aquacultura Indonesiana, 15(1): 73-80.

Kelishomi, Z.H., B. Goliaei, H. Mahdavi, A. Nikoofar, M. Rahimi, A. A. Moosavi-Movahedi, F. Mamashli and B. Bigdeli. 2016. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chem., 196: 897–902.

Li, S-D., C-H. Zhang, J-J. Donga, C-Y. Oua, W-Y. Quana, L. Yanga and X-D. Shea. 2010. Effect of cupric ion on thermal degradation of quaternized chitosan. Carbohydr. Polym. 81(2): 182–187.

Mathlouthi, M. and J.L. Koenig. 1987. Vibrational spectra of carbohydrates. Adv. Carbohydr. Chem. Biochem., 44: 7–89.

Melo-Silveira R., G. Fidelis, R. Viana, V. Soeiro, R. Silva, D. Machado, and R.H. Oliveira. 2014. Antioxidant and antiproliferative activities of methanolic extract from a neglected agricultural product: Corn cobs. Molecules, 19(4): 5360–5378.

Moussout, H., H. Ahlafi, M. Aazza, and M. Bourakhouadar. 2016. Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polymer Degradation and Stability, 130: 1-9.

Nam, Y.S.,W. H. Park, D. Ihm, and S.M. Hudson. 2010. Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr. Polym., 80(1): 291–295.

Pamies, R., R. Schmidt, M.D.C.L. Martínez, and J.G.D.L. Torre. 2010. The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohydr. Polym., 80(1): 248–253.

Silverstein, R.M. and F.X. Webster. 1991. Spectrometric Identification of Organic Compounds USA: Wiley, 482 pp.

Sindhi, V., V. Gupta , K. Sharma, S. Bhatnagar, R. Kumari, and N. Dhaka. 2013. Potential applications of antioxidants. Journal of Pharmacy Research, 7(9): 828–835.

Smidsrod, O., A. Haug, and B. Larsen. 1963. Degradation of alginate in the presence of reducing compounds. Acta Chem. Scand., 17: 2628-2637.

Thomas, F., L.C.E Lundqvist, M. Jam, A. Jeudy, T. Barbeyron, C. Sandström, and M. Czjzek. 2013. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. The Journal of Biological Chemistry, 288(32): 23021–23037.

Ulan´ski, P. and J. Rosiak. 1992. Preliminary studies on radiation-induced changes in chitosan. International Journal of Radiation Applications and Instrumentation. Part C Radiation Physics and Chemistry, 39(1): 53–57.

Yudiati, E. and A. Isnansetyo. 2017. Characterizing the three different alginate type of Sargassum siliquosum. Ilmu Kelautan, 22(1): 7-14.

Yudiati, E., G.W. Santosa, M.R. Tontowi, S. Sedjati, E. Supriyantini, and M.Khakimah. 2018. Optimization of alginate alkaline extraction technology from Sargassum polycystum and its antioxidant properties. IOP Conf. Series: Earth and Environmental Science 139, 012052.

Yue, W. 2012. Preparation of low-molecular-weight hyaluronic acid by ozone treatment. Carbohydr. Polym., 89(2): 709–712.

Zhao, X., B. Li, C. Xue and L. Sun. 2012. Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. J. Appl. Phycol., 24(2), 295–300.




DOI: http://dx.doi.org/10.21534/ai.v19i1.121

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018