Effect of Salinity on Osmoregulation and Growth of Batik Lobster (Panulirus longipes)

Muhammad Ikal Haikal, Yushinta Fujaya, Dody Dharmawan Trijuno

Abstract

Salinity is one of the environmental factors that influence the body's physiological processes primarily in the osmoregulation process and impacts on growth. The purpose of this study is to see the impact of salinity on osmoregulation and growth and determine the optimum traffic for the maintenance of Panulirus longipes. This research was conducted in September 2019-January 2020, at the Balai Udang Mata Seed City, Kendari City, Southeast Sulawesi, Indonesia. The salinity tested in this study was 28, 31, and 34o/oo.  The results showed that high salinity had an impact on the level of osmotic action obtained, which was higher, but a decrease in the diameter of granulocytes and hyalinocytes was getting smaller. Male lobsters have better adaptability to salinity than females, where the salinity range of 28-34o/oo can still be tolerated by not affecting growth. Conversely, females are strongly affected by salinity and the optimal support for growth is 31o/oo.

Keywords

hemocyte, lobster, osmoregulation, growth, salinity

Full Text:

PDF

References

Adeogun, A. O., Salami, O. A., Chukwuka, A. V., & Alaka, O. O. (2015). Haematological and serum biochemical profile of the blue crab, Callinectes amnicola from two tropical lagoon ecosystems. African Journal of Biomedical Research, 18(3), 233–247.

Bazer, C. E., Preston, R. L., & Perry, W. L. (2016). Increased salinity affects survival and osmotic response of rusty crayfish Orconectes rusticus Girard, 1852 and northern clearwater crayfish O. propinquus Girard, 1852 (Decapoda: Astacoidea: Cambaridae) as salinity increases: The potential for estuarine i. Journal of Crustacean Biology, 36(5), 607–614.

Charmantier, G., Charmantier-Daures, M., & Aiken, D. E. (1984). Neuroendocrine control of hydromineral regulation in the American lobster Homarus americanus H. Milne-Edwards, 1837 (Crustacea, Decapoda). 2. Larval and Postlarval Stages. General and Comparative Endocrinology, 54(1), 20–34.

Charmantier, Guy, Haond, C., Lignot, J. H., & Charmantier-Daures, M. (2001). Ecophysiological adaptation to salinity throughout a life cycle: A review in homarid lobsters. Journal of Experimental Biology, 204(5), 967–977.

Cook, J. T., McNiven, M. A., Richardson, G. F., & Sutterlin, A. M. (2000). Growth rate, body composition and feed digestibility/conversion of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture, 188(1–2), 15–32.

Damora, A., Wardiatno, Y., & Adrianto, L. (2018). Hasil tangkapan per upaya dan parameter populasi lobster pasir (Panulirus homarus) di perairan Gunung Kidul Catch. Marine Fisheries : Journal of Marine Fisheries Technology and Management, 9(1), 11.

Erlania, E., Radiarta, I. N., & Haryadi, J. (2017). Status pengelolaan sumberdaya benih lobster untuk mendukung perikanan budidaya: studi kasus perairan Pulau Lombok. Jurnal Kebijakan Perikanan Indonesia, 8(2), 85.

Evans, D. (2008). and Ionic. In Osmotic and ionic regulation. CRC Press.

Fujaya, Y. & Sudaryono A (2016). Fisiologi Ikan dan aplikasinya pada perikanan. Pustaka Al Zikra. 309 hal

Factor, J. R. (1995). Biology of the lobster Homarus americanus. Academic Press Limited.

Haikal, M., Kurnia, A., & Muskita, W. H. (2017). Pengaruh kombinasi tepung Keong Bakau (Telescopium telescopium) dan minyak kelapa tradisional dalam pakan buatan terhadap pertumbuhan lobster Mutiara (Panulirus ornatus). Media Akuatika, 2(3), 418–425.

Henry, R. P., Lucu, Č., Onken, H., & Weihrauch, D. (2012). Multiple functions of the crustacean gill: Osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Frontiers in Physiology, 3 NOV (November), 1–34.

Hong, Y., Yang, X., Cheng, Y., Liang, P., Zhang, J., Li, M., Shen, C., Yang, Z., & Wang, C. (2013). Effects of pH, temperature, and osmolarity on the morphology and survival rate of primary hemocyte cultures from the Mitten Crab, Eriocheir sinensis. In Vitro Cellular and Developmental Biology - Animal, 49(9), 716–727.

Jiménez, C. P., Huchin-Mian, J. P., Simões, N., Briones-Fourzán, P., Lozano-Álvarez, E., Sánchez-Arteaga, A., Pérez-Vega, J. A., Simá-Álvarez, R., Rosas Vazquez, C., & Rodríguez-Canul, R. (2012). Physiological and immunological characterization of Caribbean spiny lobsters Panulirus argus naturally infected with Panulirus argus Virus 1 (PaV1). Diseases of Aquatic Organisms, 100(2), 113–124.

Jones, C. M. (2009). Temperature and salinity tolerances of the tropical spiny lobster, Panulirus ornatus. Journal of the World Aquaculture Society, 40(6), 744–752.

Kembaren, D. D., Lestari, P., & Ramadhani, R. (2015). Parameter biologi lobster pasir (Panulirus homarus) di perairan tabanan, Bali. Bawal Widya Riset Perikanan Tangkap, 7(1), 35.

Larasati, R. F., Suadi, & Setyobudi, E. (2018). Short communication: Population dynamics of double-spined rock lobster (Panulirus penicillatus olivier, 1791) in southern coast of Yogyakarta, Indonesia. Biodiversitas, 19(1), 337–342.

Lignot, J. H., Cochard, J. C., Soyez, C., Lemaire, P., & Charmantier, G. (1999). Osmoregulatory capacity according to nutritional status, molt stage and body weight in Penaeus stylirostris. Aquaculture, 170(1), 79–92.

Lucu, Č., Devescovi, M., Skaramuca, B., & Kožul, V. (2000). Gill Na,K-ATPase in the spiny lobster Palinurus elephas and other marine osmoconformers. Adaptiveness of enzymes from osmoconformity to hyperregulation. Journal of Experimental Marine Biology and Ecology, 246(2), 163–178.

Matozzo, V., & Mrin, M. G. (2010). First cytochemical study of haemocytes from the crab Carcinus a estuarii (Crustacea, Decapoda). European Journal of Histochemistry, 54(1), 44–49.

Rifano, R. (2014). Aplikasi image-j untuk menghitung perubahan luas inti eritrosit bebek akibat larutan hipotonis. Skripsi. Fakultas Kedokteran Hewan, Institu Pertanian Bogor.

Romano, N., Wu, X., Zeng, C., Genodepa, J., & Elliman, J. (2014). Growth, osmoregulatory responses and changes to the lipid and fatty acid composition of organs from the Mud Crab, Scylla serrata, over a broad salinity range. Marine Biology Research, 10(5), 460–471.

Romano, N., & Zeng, C. (2012). Osmoregulation in decapod crustaceans: Implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture, 334–337(March), 12–23.

Rombe, K. H., Wardiatno, W., & Luky, A. (2018). Pengelolaan perikanan lobster dengan pendekatan eafm di teluk palabuhan Ratu. 9986(September), 231–242.

Shanks, S., & Jones, C. (2010). 5.13 Status of lobster hatchery technology development. Proceedings of the International Lobster Aquaculture Symposium Held in Lombok, Indonesia, 22–25 April 2014, 52(December), 304–315.

Shock, B. C., Stueckle, T. A., & Foran, C. M. (2009). Effects of Salinity Stress on Survival, Metabolism, Limb Regeneration, and Ecdysis in Uca Pugnax. Journal of Crustacean Biology, 29(3), 293–301.

Simon, C. J., Fitzgibbon, Q. P., Battison, A., Carter, C. G., & Battaglene, S. C. (2015). Bioenergetics of nutrient reserves and metabolism in spiny lobster juveniles Sagmariasus verreauxi: Predicting nutritional condition from hemolymph biochemistry. Physiological and Biochemical Zoology, 88(3), 266–283.

Vidya, K., & Joseph, S. (2012). Effect of salinity on growth and survival of juvenile indian spiny lobster, Panulirus homarus (linnaeus). Indian Journal of Fisheries, 59(1), 113–118.

Refbacks

  • There are currently no refbacks.